Best Symmetric Low Rank Approximation via the Symmetry Preserving Singular Value Decomposition
نویسندگان
چکیده
The symmetry preserving singular value decomposition (SPSVD) produces the best symmetric (low rank) approximation to a set of data. These symmetric approximations are characterized via an invariance under the action of a symmetry group on the set of data. The symmetry groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set includes the rotational, reflectional, dihedral, and inversion symmetry groups. In order to calculate the best symmetric (low rank) approximation, the symmetry of the data set must be determined. Therefore, matrix representations for each of the non-spherical symmetry groups have been formulated. These new matrix representations lead directly to a novel reweighting iterative method to determine the symmetry of a given data set by solving a series of minimization problems. Once the symmetry of the data set is found, the best symmetric (low rank) approximation in the Frobenius norm and matrix 2-norm can be established by using the SPSVD.
منابع مشابه
Best Nonspherical Symmetric Low Rank Approximation
Abstract. The symmetry preserving singular value decomposition (SPSVD) produces the best symmetric (low rank) approximation to a set of data. These symmetric approximations are characterized via an invariance under the action of a symmetry group on the set of data. The symmetry groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set includes the rotatio...
متن کاملA Symmetry Preserving Singular Value Decomposition
A reduced order representation of a large data set is often realized through a principal component analysis based upon a singular value decomposition (SVD) of the data. The left singular vectors of a truncated SVD provide the reduced basis. In several applications such as facial analysis and protein dynamics, structural symmetry is inherent in the data. Typically, reflective or rotational symme...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملSvd-based Algorithms for the Best Rank-1 Approximation of a Symmetric Tensor
This paper revisits this problem of finding the best rank-1 approximation to a symmetric tensor and makes three contributions. First, in contrast to the many long and lingering arguments in the literature, it offers a straightforward justification that generically the best rank-1 approximation to a symmetric tensor is symmetric. Second, in contrast to the typical workhorse in the practice for t...
متن کاملThe Singular Value Decomposition and Low Rank Approximation
The purpose of this paper is to present a largely self-contained proof of the singular value decomposition (SVD), and to explore its application to the low rank approximation problem. We begin by proving background concepts used throughout the paper. We then develop the SVD by way of the polar decomposition. Finally, we show that the SVD can be used to achieve the best low rank approximation of...
متن کامل